10x^2+78x+44=0

Simple and best practice solution for 10x^2+78x+44=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10x^2+78x+44=0 equation:



10x^2+78x+44=0
a = 10; b = 78; c = +44;
Δ = b2-4ac
Δ = 782-4·10·44
Δ = 4324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4324}=\sqrt{4*1081}=\sqrt{4}*\sqrt{1081}=2\sqrt{1081}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(78)-2\sqrt{1081}}{2*10}=\frac{-78-2\sqrt{1081}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(78)+2\sqrt{1081}}{2*10}=\frac{-78+2\sqrt{1081}}{20} $

See similar equations:

| 5x^2+2x-40=0 | | 3x+15÷3=9 | | 5x+3=2x-25 | | 2^(2x+2)=128 | | x/2+x3=10 | | (k+1)^2=40 | | (x+1)(2x-1)+(x+2((x-1)+(2x-1)(-(x+1))=33 | | 8(4)4y=-27 | | 6x−5/8=7 | | 1/4x+2=3/4x | | 6+x/5=-2 | | -1/3+2z=-1/6 | | 5x-19=2x-10 | | 2x-2+135=180 | | x+2+x+3=127 | | (1-p)=(1+p+p+p+p+p) | | 49+5=2+3.25a | | 1/2(-4+6x)=1/3x-+2/3(x+9) | | v+5.5=9 | | p-7/2=3 | | 2x^22=6x-3 | | 8y+3=5y+24 | | 13=x+3+x+1 | | y+14=32 | | 180=-2x+240 | | 13/49=66/x | | 3j-11=4 | | -4=p-4/2 | | 7.18x^2+2.99x=4.84 | | 3x+2+3(1+x)=23 | | x/4+1/2=3/8 | | X=6,3i |

Equations solver categories